Generating Normally Distributed Random Numbers by Inverting the Normal Distribution Function

By Friedrich Gebhardt

Abstract

1. Introduction and Summary. Some calculations on digital computers require a multitude of normally distributed random numbers, for instance in connection with Monte Carlo methods. Because of the great quantity, a fast way of generating them is desired, which would naturally be done at some expense of precision. Several methods are described and compared by M. E. Muller in [3]. In order to transform uniformly distributed random numbers into normally distributed ones, he proposes in [2] to approximate the inverse function of the cumulative normal distribution function by polynomials. The interval $0 \leqq t \leqq 1$ is divided into 128 parts of equal lengths, and for all of them except the first and the last one, where the inverse function becomes infinite, polynomials of first, second, and fourth degree respectively, are given, approximating the inverse distribution with a maximum error of 0.0004 . The division into 128 parts is appropriate for binary electronic computers. We give in Section 2 similar approximations for decimal computers dividing the whole interval into 100 parts for maximum errors of . 0004 and .0001 . Near its singularities, the inverse function can be approximated by rational functions and by an iterative method based on the semiconvergent series of the normal distribution function. This will be done in Section 3 .

2. Approximation by Polynomials. Let $\Phi(x)$ be the cumulative normal distribution function and $\psi(t)$ its inverse, $0 \leqq t \leqq 1$. Because of the relation

$$
\psi(1-t)=-\psi(t)
$$

we restrict our attention to $t \leqq .5$. We want to approximate $\psi(t)$ in appropriate intervals by polynomials. In order to facilitate address modification on decimal computers, the whole range of t is divided into subintervals of length $\frac{1}{100}$, the subinterval I_{n} being
I_{n} :

$$
\frac{n}{100} \leqq t<\frac{n+1}{100}, \quad n=0,1, \cdots 49
$$

To get a maximum error ϵ_{M} of less than 0.0004 , approximation of $\psi(t)$ by linear functions $a_{n}+b_{n} t$ is sufficient for $8 \leqq n \leqq 49$. For $n \geqq 16$, the maximum error is even less than 0.0001 . The coefficients a_{n} and b_{n} are shown in Table 1. Quadratic functions are sufficient for $\epsilon_{M}=.0001, n \geqq 3$, and $\epsilon_{M}=.0004, n \geqq 2$, respectively, polynomials of third order for $\epsilon_{M}=.0001, n=2$, and for $\epsilon_{M}=.0004, n=1$, and a fourth order polynomial for $\epsilon_{M}=.0001, n=1$. The coefficients are listed in Table 2. The first polynomial in Table $2(n=0)$ is correct to 0.001 for $t \geqq .0020093$ only, corresponding to $\psi(t)=2.8767$; for smaller values of t, the error becomes fairly large, and the function value at $t=0$ is -3.283258 instead of $-\infty$. This approxi-

[^0]Table 1
Linear approximation of $\psi(t)$. Maximum error $\epsilon_{M}<.0004$ for all values of n, $\epsilon_{M}<.0001$ for $n \geqq 16$

n	$-a_{n}$	b_{n}	n	$-a_{n}$	b_{n}
8	1.919253	6.4317	29	1.393892	2.8984
9	1.873295	5.9203	30	1.380905	2.8551
10	1.831555	5.5024	31	1.368507	2.8151
11	1.793280	5.1541	32	1.356829	2.7786
12	1.757969	4.8596	33	1.345743	2.7450
13	1.725181	4.6072	34	1.335272	2.7142
14	1.694582	4.3885	35	1.325474	2.6862
15	1.665962	4.1976	36	1.316259	2.6606
16	1.639047	4.0293	37	1.307603	2.6372
17	1.613677	3.8800	38	1.299624	2.6162
18	1.589728	3.7469	39	1.292216	2.5972
19	1.567050	3.6275	40	1.285417	2.5802
20	1.545557	3.5200	41	1.279268	2.5652
21	1.525151	3.4228	42	1.273684	2.5519
22	1.505752	3.3346	43	1.268782	2.5405
23	1.487311	3.2544	44	1.264515	2.5308
24	1.469771	3.1813	45	1.260872	2.5227
25	1.453075	3.1145	46	1.257974	2.5164
26	1.437140	3.0532	47	1.255719	2.5116
27	1.422024	2.9972	48	1.254233	2.5085
28	1.407578	2.9456	49	1.253449	2.5069

mation might be used, if not too many normally distributed random numbers are needed, or if a lower accuracy is sufficient near $t=0$ and $t=1$.

The linear functions are computed such, that the error is the same at both ends of the proper interval and has the same absolute value and opposite sign in its middle. The maximum absolute error is then slightly greater. The polynomials of second and higher degree, with the exception of the first one ($n=0$), are Chebyshev approximations, which again almost minimize the maximum absolute error. The coefficients were computed first for a linear transform, y, of t, such that $y= \pm 1$ at the end points of the corresponding interval. The rounding error of each term then did not exceed 10^{-6}. Transforming to t as independent variable, the rounding error remains of the same order of magnitude, although the high order coefficients seem to provide an accuracy of four decimals only. I.e., any rounding error of the high order term is adjusted by corresponding alterations of the other coefficients to yield a total rounding error not much greater than 10^{-6}. Much accuracy is lost if all coefficients are rounded to four decimal places. The first polynomial $(n=0)$ yields an error of absolute value 0.001 and opposite signs at six points of the interval $0.0020093 \leqq t \leqq 0.01$. The first end point is chosen so as to get as large an interval as possible with an absolute error less than 0.001 .
3. Special Methods for the End Intervals. If the accuracy of the first polynomial in Table 2 is not sufficient, then other methods must be used to invert the normal distribution function in this interval. An approximation closer than by a poly-

Table 2
Approximation of $\psi(t)$ by polynomials of second, third and fourth degree

n	$-a_{n}$	b_{n}	$-c_{n}$	d_{n}	$-e_{n}$
Maximum error <.001 for $t \geqq .0020093$					
0	3.283258	268.6351	38726.92	3186023	$104377 \cdot 10^{3}$
Maximum error <.0004					
1	2.862543	73.76893	2360.586	34721.3	
2	2.573835	31.86255	292.280		
Maximum error < . 0001					
1	2.940578	95.84037	4654.285	138586.9	1731093
2	2.686913	45.71166	851.840	7460.8	
3	2.454298	23.714938	153.1653		
4	2.363419	19.115067	94.8907		
5	2.289468	16.134053	64.8247		
6	2.226823	14.034602	47.2253		
7	2.172275	12.469763	35.9980		
8	2.123837	11.255154	28.3813		
9	2.080175	10.282668	22.9647		
10	2.040482	9.487217	18.9787		
11	2.003891	8.820893	15.9447		
12	1.970004	8.255343	13.5847		
13	1.938422	7.768893	11.7113		
14	1.908714	7.344010	10.1920		
15	1.880811	6.971602	8.9493		

Table 3
Approximation of $\psi(t)$ by rational functions $R_{i}(t)=A_{i} t+B_{i}+C_{i} / t+D_{i} / t^{2}$ in the intervals $\alpha_{i} \leqq t \leqq \beta_{i}$

α_{i}	β_{i}	A_{i}	$-B_{i}$	$-10^{3} C_{i}$	$10^{6} D_{i}$
Maximum error <. 0004					
. 080000	. 030000	4.38271	1.535054	19.62190	159.3904
. 030000	. 010000	9.46273	1.978144	6.16505	17.4057
. 010000	. 003153	23.9144	2.402951	1.782268	1.60830
. 003153	. 000962	66.1240	2.794870	. 500034	. 138558
Maximum error <. 0001					
. 010000	. 0044649	20.95856	2.3422273	2.1796742	2.436095
. 0044649	. 0019609	42.18387	2.6240660	. 8978071	.4418733
. 0019609	. 0008480	87.84036	2.8901189	. 36616773	. 078138077
. 0008480	. 0003624	187.57965	3.1416999	. 14842209	. 013573432

nomial of fourth degree is given by the functions

$$
R_{i}(t)=A_{i} t+B_{i}+\frac{C_{i}}{t}+\frac{D_{i}}{t^{2}}, \quad \quad \alpha_{i} \leqq t \leqq \beta_{i}
$$

which need about the same computation time on digital computers. Table 3 shows the coefficients of four such functions with a maximum error of 0.0004 in the interval $.000962 \leqq t \leqq 0.08$ and of four functions with a maximum error of 0.0001 in the interval $.000362 \pm \leqq t \leqq 0.01$. In the first case, the use of all four rational functions eliminates the need of quadratic and cubic polynomials as described in Section 2. This simplifies the program; however, the rational functions need about one and a half times the computation time of a quadratic polynomial.

In the remaining interval, $t<.000962, t<.0003624$ respectively, i.e. $x<-3.1016, x<-3.3800$ respectively, the approximation

$$
\begin{aligned}
\Phi(x) \approx S(x) & =\frac{\phi(x)}{T(x)} \\
T(x) & =-x-\frac{1}{x}+\frac{2}{x^{3}}-\frac{6}{x^{5}}
\end{aligned}
$$

may be used. It is derived from the semi-convergent series for $\Phi(x) / \phi(x)$; the coefficient of x^{-5}, however, is altered in order to yield a smaller absolute error. Let t be given, and $x, x^{*}, \Delta x$ be the solutions of

$$
\begin{aligned}
t & =\Phi(x) \\
t & =S\left(x^{*}\right) \\
x^{*} & =x+\Delta x
\end{aligned}
$$

Then the first terms of the power expansion yield

$$
\begin{gathered}
S\left(x^{*}\right)=\Phi\left(x^{*}-\Delta x\right) \approx \Phi\left(x^{*}\right)-\Delta x \phi\left(x^{*}\right) \\
\Delta x \approx \frac{\Phi\left(x^{*}\right)}{\phi\left(x^{*}\right)}-\frac{1}{T\left(x^{*}\right)}
\end{gathered}
$$

Numerical evaluations of this expression show that $|\Delta x|<.000067$ for $t<$ $.001(x<-3.09)$.

The solution x^{*} is obtained by an iterative procedure. Let x_{k} be the k th approximation and

$$
\begin{aligned}
Q & =\frac{S\left(x_{k}\right)-t}{S\left(x_{k}\right)}, \\
\Delta x_{k} & =\frac{Q+Q^{2} / 2+Q^{3} / 3}{x_{k}+\frac{1}{x_{k}}} \\
x_{k+1} & =x_{k}+\Delta x_{k} .
\end{aligned}
$$

This procedure converges considerably faster than Newton's method for $S(x)$, and was derived from Newton's method applied to $\log S(x)$. Numerical calcula-
tions showed: If $t<.001$ and $\left|\Delta x_{k}\right|<.02$, then $\left|x_{k+1}-x^{*}\right|<.00035$ and, as $\left|x_{k+1}-x^{*}\right|$ and $\left|x^{*}-x\right|$ depend on t and assume their maxima at different points, $\left|x_{k+1}-x\right|<.0004$ (even $<.00037$). Thus, the iteration may be ended as soon as $\left|\Delta x_{k}\right|<.02$, if an accuracy of .0004 is sufficient. In the same way, if $t<.001$ and $\left|\Delta x_{k}\right|<.0035$, then $\left|x_{k+1}-x^{*}\right|<.00052,\left|x_{k+1}-x\right|<.0001$. As initial values, x_{0}, of the iteration process are recommended in the first case $\left(\epsilon_{M}<.0004\right) \psi(.000962)-.020=-3.122$ and in the second case $\left(\epsilon_{M}<.0001\right)$ $\psi(.0003624)-.0035=-3.3835$ in order to cover the greatest possible t-interval with a single iteration. In the first case, 3 iterations are needed for $t=0.0001$ and 4 for $t=0.00001$.

A program to compute $\psi(t)$ was written for the Siemens 2002 computer, using linear approximations, rational functions $R_{i}(t)$ and the iteration process, $\epsilon_{M}=$ 0.0004 . One iteration needed about the time of 40 multiplications. However, in most values of t, the iteration process is not involved, and the average computation time was approximately that of four and a half multiplications. This program was part of a multidimensional integration problem [1], where more than 900000 normal deviates were computed.

University of Connecticut
Storrs, Connecticut

1. Friedrich Gebhardt, "On the risk of some strategies for outlying observations," submitted to Ann. Math. Statist.
2. Mervin E. Muller, "An inverse method for the generation of random normal deviates on large-scale computers," MTAC, v. 12, 1958, p. 167-174.
3. Mervin E. Muller, "A comparison of methods for gənerating normal deviates on digital computers," J. Assoc. Comput. Mach., v. 6, 1959, p. 376-383.

Optimum Runge-Kutta Methods

By T. E. Hull and R. L. Johnston

Abstract

The optimum Runge-Kutta method of a particular order is the one whose truncation error is a minimum. Various measures of the size of the truncation error are considered. The optimum method is practically independent of the measure being used. Moreover, among methods of the same order which one might consider using the difference in size of the estimated error is not more than a factor of 2 or 3 . These results are confirmed in practice insofar as the choice of optimum method is concerned, but they underestimate the variation in error between different methods.

1. Introduction. For the solution of

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

the general Runge-Kutta method of order m uses the formula

$$
\begin{equation*}
y_{n+1}=y_{n}+\sum_{\imath=1}^{m} w_{i} k_{i} \tag{2}
\end{equation*}
$$

[^1]
[^0]: Received July 23, 1963. Work was done in part while the author was at the Statistische Arbeitsgruppe Prof. Dr. H. Kneser, University Tübingen.

[^1]: Received September 24, 1963, revised November 19, 1963. This research was supported in part by the Defence Research Board of Canada.

