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Generating Normally Distributed Random 
Numbers by Inverting the Normal Distribution 

Function 

By Friedrich Gebhardt 

1. Introduction and Summary. Some calculations on digital computers require a 
multitude of normally distributed random numbers, for instance in connection 
with Monte Carlo methods. Because of the great quantity, a fast way of generating 
them is desired, which would naturally be done at some expense of precision. 
Several methods are described and compared by M. E. Muller in [3]. In order to 
transform uniformly distributed random numbers into normally distributed ones, 
he proposes in [2] to approximate the inverse function of the cumulative normal 
distribution function by polynomials. The interval 0 < t < 1 is divided into 128 
parts of equal lengths, and for all of them except the first and the last one, where 
the inverse function becomes infinite, polynomials of first, second, and fourth 
degree respectively, are given, approximating the inverse distribution with a 
maximum error of 0.0004. The division into 128 parts is appropriate for binary 
electronic computers. We give in Section 2 similar approximations for decimal 
computers dividing the whole interval into 100 parts for maximum errors of .0004 
and .0001. Near its singularities, the inverse function can be approximated by 
rational functions and by an iterative method based on the semiconvergent series 
of the normal distribution function. This will be done in Section 3. 

2. Approximation by Polynomials. Let P(x) be the cumulative norrmial distri- 
bution function and A1(t) its inverse, 0 < t < 1. Because of the relation 

41(l- t) = -41(0) 

we restrict our attention to t ? .5. We want to approximate l{(t) in appropriate 
intervals by polynomials. In order to facilitate address modification on decimal 
computers, the whole range of t is divided into subintervals of length T1-, the 
subinterval In. being 

n < t < nFl+ .. 49. 
100 100 n=0,1) 49 

To get a maximum error EM of less than 0.0004, approximation of t(t) by linear 
functions an + bnt is sufficient for 8 < n < 49. For n > 16, the maximum error 
is even less than 0.0001. The coefficients an and bn are shown in Table 1. Quadratic 
functions are sufficient for EM = .0001, n _ 3, and EM = .0004, n _ 2, respectively, 
polynomials of third order for E, = .0001, n = 2, and for EM = .0004, n = 1, and a 
fourth order polynomial for EM = .0001, n = 1. The coefficients are listed in Table 2. 
The first polynomial in Table 2 (n = 0) is correct to 0.001 for t > .0020093 only, 
corresponding to 1t'(t) = 2.8767; for smaller values of t, the error becomes fairly 
large, and the function value at t = 0 is - 3.283 258 instead of - CO. This approxi- 
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TABLE 1 
Linear approximation of At(t). Maximnum error EAm < .0004 for all values of n, 

EM < .0001 for n _ 16 

n -a, bn n -a, bn 

8 1.919 253 6.4317 29 1.393 892 2.8984 
9 1.873 295 5.9203 30 1.380 905 2.8551 

10 1.831 555 5.5024 31 1.368 507 2.8151 
11 1.793 280 5.1541 32 1.356 829 2.7786 
12 1.757 969 4.8596 33 1.345 743 2.7450 
13 1.725 181 4.6072 34 1.335 272 2.7142 
14 1.694 582 4.3885 35 1.325 474 2.6862 
15 1.665 962 4.1976 36 1.316 259 2.6606 
16 1.639 047 4.0293 37 1.307 603 2.6372 
17 1.613 677 3.8800 38 1.299 624 2.6162 
18 1.589 728 3.7469 39 1.292 216 2.5972 
19 1.567 050 3.6275 40 1.285 417 2.5802 
20 1.545 557 3.5200 41 1.279 268 2.5652 
21 1.525 151 3.4228 42 1.273 684 2.5519 
22 1.505 752 3.3346 43 1.268 782 2.5405 
23 1.487 311 3.2544 44 1.264 515 2.5308 
24 1.469 771 3.1813 45 1.260 872 2.5227 
25 1.453 075 3.1145 46 1.257 974 2.5164 
26 1.437 140 3.0532 47 1.255 719 2.5116 
27 1.422 024 2.9972 48 1.254 233 2.5085 
28 1.407 578 2.9456 49 1.253 449 2.5069 

mation might be used, if not too many normally distributed random numbers are 
needed, or if a lower accuracy is sufficient near t = 0 and t = 1. 

The linear functions are computed such, that the error is the same at both 
ends of the proper interval and has the same absolute value and opposite sign in its 
middle. The maximum absolute error is then slightly greater. The polynomials of 
second and higher degree, with the exception of the first one (n = 0), are Chebyshev 
approximations, which again almost minimize the maximum absolute error. The 
coefficients were computed first for a linear transform, y, of t, such that y = ?1 
at the end points of the corresponding interval. The rounding error of each term 
then did not exceed 10-6. Transforming to t as independent variable, the rounding 
error remains of the same order of magnitude, although the high order coefficients 
seem to provide an accuracy of four decimals only. I.e., any rounding error of the 
high order term is adjusted by corresponding alterations of the other coefficients 
to yield a total rounding error not much greater than 10-6. Much accuracy is lost 
if all coefficients are rounded to four decimal places. The first polynomial (n = 0) 
yields an error of absolute value 0.001 and opposite signs at six points of the in- 
terval 0.002 0093 ? t ? 0.01. The first end point is chosen so as to get as large an 
interval as possible with an absolute error less than 0.001. 

3. Special Methods for the End Intervals. If the accuracy of the first polynomial 
in Table 2 is not sufficient, then other methods must be used to invert the normal 
distribution function in this interval. An approximation closer than by a poly- 
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TABLE 2 
Approximation of A1(t) by polynomials of second, third and fourth degree 

n -an bn -cn dn -e, 

Maximum error <.001 for t > .002 0093 

0 3.283 258 268.6351 38 726.92 3 186 023 104 377 103 

Maximum error <.0004 

1 2.862 543 73.768 93 2 360.586 34 721.3 
2 2.573 835 31.862 55 292.280 

Maximum error <.0001 

1 2.940 578 95.840 37 4 654.285 138 586.9 1 731 093 
2 2.686 913 45.711 66 851.840 7 460.8 
3 2.454 298 23.714 938 153.1653 
4 2.363 419 19.115 067 94.8907 
5 2.289 468 16.134 053 64.8247 
6 2.226 823 14.034 602 47.2253 
7 2.172 275 12.469 763 35.9980 
8 2.123 837 11.255 154 28.3813 
9 2.080 175 10.282 668 22.9647 

10 2.040 482 9.487 217 18.9787 
11 2.003 891 8.820 893 15.9447 
12 1.970 004 8.255 343 13.5847 
13 1.938 422 7.768 893 11.7113 
14 1.908 714 7.344 010 10.1920 
15 1.880 811 6.971 602 8.9493 

TABLE 3 
Approximation of 41(t) by rational functions Ri(t) -Ait + Bi + Ci/t + Di/t2 

in the intervals ai < t < f 

ai ji Ai -Bf -1l3Ci 106Di 

Maximum error <.0004 

.080 000 .030 000 4.382 71 1.535 054 19.621 90 159.3904 

.030 000 .010 000 9.462 73 1.978 144 6.165 05 17.4057 

.010 000 .003 153 23.914 4 2.402 951 1.782 268 1.608 30 

.003 153 .000 962 66.124 0 2.794 870 .500 034 .138 558 

Maximum error <.0001 

.010 000 .004 4649 20.958 56 2.342 2273 2.179 6742 2.436 095 

.004 4649 .001 9609 42.183 87 2.624 0660 .897 8071 .441 8733 

.001 9609 .000 8480 87.840 36 2.890 1189 .366 167 73 .078 138 077 

.000 8480 .000 3624 187.579 65 3.141 6999 .148 422 09 .013 573 432 
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nomial of fourth degree is given by the functions 

Ci Di 
Ri(t) = Ait + B +- + t- ai < t < _i t -- 

which need about the same computation time on digital computers. Table 3 shows 
the coefficients of four such functions with a maximum error of 0.0004 in the in- 
terval .000 962 ? t ? 0.08 and of four functions with a maximum error of 0.0001 
in the interval .000 362 4 < t ? 0.01. In the first case, the use of all four rational 
functions eliminates the need of quadratic and cubic polynomials as described in 
Section 2. This simplifies the program; however, the rational functions need about 
one and a half times the computation time of a quadratic polynomial. 

In the remaining interval, t < .000 962, t < .000 362 4 respectively, i.e. 
x < - 3.1016, x < - 3.3800 respectively, the approximation 

D(x) ~ S(x) = (x) 

T(x) = x ! + 2 - 6 

may be used. It is derived from the semi-convergent series for 1(x)/4(x); the 
coefficient of X-5, however, is altered in order to yield a smaller absolute error. 
Let t be given, and x, x8, Ax be the solutions of 

t = (x), 

t S(x*), 

x* =x + Ax. 

Then the first terms of the power expansion yield 

S(x*) = 4(x* - Ax) ( D(x*) -Ax(x*), 

A x 
- 

(x*) 
- 

1 

O(x*) T(x* 

Numerical evaluations of this expression show that I Ax I < .000 067 for t < 
.001 (x <- 3.09). 

The solution x* is obtained by an iterative procedure. Let Xk be the kth approxi- 
mation and 

Q - S(xk) - t 

S(Xk) 

AXk = Q + Q2/2 + Q3/3 
Xk + - Xk 

Xk+1 = Xk + AXk. 

This procedure converges considerably faster than Newton's method for S(x), 
and was derived from Newton's method applied to log S(x). Numerical calcula- 
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tions showed: If t < .001 and I Axk I < .02, then I Xk+1 -x* < .000 35 and, as 
Xk+1 - x* and x* - x I depend on t and assume their maxima at different 

points, I Xk+1 - x < .0004 (even <.000 37). Thus, the iteration may be ended 
as soon as I AXk I < .02, if an accuracy of .0004 is sufficient. In the same way, if 
t < .001 and I AXk I < .0035, then I Xk+1 - x | < .000 52, | Xk+1 - x I < .0001. 
As initial values, x0, of the iteration process are recommended in the first case 
(EM < .0004) 4p(.000 962) - .020 = -3.122 and in the second case (EM < .0001) 

4I(.000 362 4) - .0035 = -3.3835 in order to cover the greatest possible t-interval 
with a single iteration. In the first case, 3 iterations are needed for t = 0.0001 
and 4 for t = 0.000 01. 

A program to compute V(t) was written for the Siemens 2002 computer, using 
linear approximations, rational functions Ri(t) and the iteration process, EM = 

0.0004. One iteration needed about the time of 40 multiplications. However, in 
most values of t, the iteration process is not involved, and the average computation 
time was approximately that of four and a half multiplications. This program was 
part of a multidimensional integration problem [1], where more than 900 000 
normal deviates were computed. 
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Optimum Runge-Kutta Methods 

By T. E. Hull and R. L. Johnston 

Abstract. The optimum Runge-Kutta method of a particular order is the one 
whose truncationi error is a minimum. Various measures of the size of the truncation 
error are considered. The optimum method is practically independent of the measure 
being used. Moreover, among methods of the same order which one might consider 
using the difference in size of the estimated error is not more than a factor of 2 or 
3. These results are confirmed in practice insofar as the choice of optimum method 
is concerned, but they underestimate the variation in error between different 
methods. 

1. Introduction. For the solution of 

(1) y = f(x, y), y(x0) = yo 

the general Runge-Kutta method of order m uses the formula 

(2) Yn+1 = Yn + wiki 
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